Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Nat Plants ; 9(10): 1659-1674, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37723204

RESUMO

Crop breeding for mechanized harvesting has driven modern agriculture. In tomato, machine harvesting for industrial processing varieties became the norm in the 1970s. However, fresh-market varieties whose fruits are suitable for mechanical harvesting are difficult to breed because of associated reduction in flavour and nutritional qualities. Here we report the cloning and functional characterization of fs8.1, which controls the elongated fruit shape and crush resistance of machine-harvestable processing tomatoes. FS8.1 encodes a non-canonical GT-2 factor that activates the expression of cell-cycle inhibitor genes through the formation of a transcriptional module with the canonical GT-2 factor SlGT-16. The fs8.1 mutation results in a lower inhibitory effect on the cell proliferation of the ovary wall, leading to elongated fruits with enhanced compression resistance. Our study provides a potential route for introducing the beneficial allele into fresh-market tomatoes without reducing quality, thereby facilitating mechanical harvesting.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/genética , Frutas/metabolismo , Melhoramento Vegetal , Agricultura
3.
Antioxidants (Basel) ; 11(5)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35624692

RESUMO

Olive pomace (OP) is the main residue that results from olive oil production. OP is rich in bioactive compounds, including polyphenols, so its use in the treatments of diseases related to oxidative stress, such as cancer, could be considered. The present work aimed to study the biological properties of different OP extracts, obtained by ohmic heating-assisted extraction and conventional heating, using water and 50% ethanol, in the treatment and prevention of colorectal cancer through Caco-2 cell models. Additionally, an in-silico analysis was performed to identify the phenolic intestinal absorption and Caco-2 permeability. The extracts were chemically characterized, and it was found that the Ohmic-hydroethanolic (OH-EtOH) extract had the highest antiproliferative effect, probably due to its higher content of phenolic compounds. The OH-EtOH induced potential modifications in the mitochondrial membrane and led to apoptosis by cell cycle arrest in the G1/S phases with activation of p53 and caspase 3 proteins. In addition, this extract protected the intestine against oxidative stress (ROS) caused by H2O2. Therefore, the bioactive compounds present in OP and recovered by applying a green technology such as ohmic-heating, show promising potential to be used in food, nutraceutical, and biomedical applications, reducing this waste and facilitating the circular economy.

4.
Plant Sci ; 319: 111258, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35487666

RESUMO

Fruit shape is a key trait in tomato (Solanum lycopersicum L.). Since most studies focused on proximo-distal fruit morphology, we hypothesized that unknown QTLs for medio-lateral direction ones could be found analysing segregating populations where major shape genes are fixed. We examined the diversity of fruit morphology in medio-lateral direction; defined divergent traits in cultivars carrying identical genetic constitution at LC and FAS genes; and identified QTLs for lobedness degree (LD) by a QTL-seq approach. We found that LC and FAS genes were not enough to explain LD variability in a large tomato collection. Then, we derived F2 populations crossing cultivars divergent for LD where LC and FAS were fixed (Yellow Stuffer x Heinz 1439 [F2YSxH] and Voyage x Old Brooks [F2VxOB]). By QTL-seq we identified a QTL for LD on chromosome 8 in both F2, which was validated in F2YSxH by interval mapping accounting for ~ 17% of the variability. Other two QTLs located on chromosomes 6 and 11 with epistasis explained ~ 61% of the variability in the F2VxOB. In conclusion, three novel QTLs with major effect for LD (ld6, ld8, and ld11) were identified through the study of diversity and genetic segregation in intraspecific tomato crosses.


Assuntos
Solanum lycopersicum , Frutas/anatomia & histologia , Frutas/genética , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/genética , Fenótipo , Locos de Características Quantitativas/genética
5.
Braz. J. Pharm. Sci. (Online) ; 58: e19238, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1374561

RESUMO

Abstract The aim of this work is to study three cultivars of artichoke (Cynara cardunculus var. scolymus): Gauchito, Guri and Oro Verde in terms of their in vitro chemoprevention and anti-inflammatory properties. These cultivars show good productive performance. The phenolic composition of their fresh leaves and edible bracts was analyzed by high performance liquid chromatography and high resolution mass spectrometry (HPLC-HRMS), showing mainly caffeoylquinic acids and flavonoids. Caffeoylquinic acids were quantified and the highest content was found in Gauchito cultivar. In this cultivar, the content of dicaffeoylquinic acids in fresh bracts was six times higher than that in fresh leaves (10064.5 ± 378.3 mg/kg versus 1451.0 ± 209.3 mg/kg respectively). Luteolin flavonoids were detected in leaves. The extracts from fresh bracts and leaves were assessed in their in vitro bioactivity against human neuroblastoma cells (SH-SY5Y). Inhibition of SH-SY5Y cells proliferation by Gauchito and Guri leaf extracts (8 µg/mL) was higher than 50 %. The leaf extracts of the same cultivars showed an inhibitory effect on human interferon IFN-I, decreasing its activity 50% at 40 µg/mL. Interestingly, the bract extracts did not show in vitro bioactivity at these concentrations, nor did the pure compounds chlorogenic acid, cynarin, apigenin and luteolin (at 2 µg/mL). These results suggest that Gauchito and Guri leaf extracts have potential for human neuroblastoma chemoprevention and treatment of inflammatory processes.


Assuntos
Folhas de Planta/classificação , Quimioprevenção , Cynara scolymus/metabolismo , Anti-Inflamatórios/farmacologia , Espectrometria de Massas/métodos , Extratos Vegetais/análise , Cromatografia Líquida de Alta Pressão/métodos , Compostos Fenólicos , Neuroblastoma/patologia
6.
Foods ; 10(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34574304

RESUMO

In this study, the digestibility of oil-in-water (O/W) emulsions using low methoxyl pectin (LMP) as surfactant and in combination with avocado peel (AP) or seed (AS) extracts was assessed, in terms of its free fatty acid (FFA) release and the phenolic compound (PC) bioaccessibility. With this purpose, AP and AS were characterized by UPLC-ESI-MS/MS before their incorporation into O/W emulsions stabilized using LMP. In that sense, AP extract had a higher content of PCs (6836.32 ± 64.66 mg/100 g of extract) compared to AS extract (1514.62 ± 578.33 mg/100 g of extract). Both extracts enhanced LMP's emulsifying properties, leading to narrower distributions and smaller particle sizes compared to those without extracts. Similarly, when both LMP and the extracts were present in the emulsions the FFA release significantly increased. Regarding bioaccessibility, the PCs from the AS extracts had a higher bioaccessibility than those from the AP extracts, regardless of the presence of LMP. However, the presence of LMP reduced the bioaccessibility of flavonoids from emulsions containing either AP or AS extracts. These results provide new insights regarding the use of PC extracts from avocado peel and seed residues, and the effect of LMP on emulsion digestibility, and its influence on flavonoids bioaccessibility.

7.
Biomolecules ; 11(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34356601

RESUMO

In this study, the total phenolic compounds content and profile, the nutritional value, the antioxidant and antiproliferative activities of avocado peel, seed coat, and seed extracts were characterized. Additionally, an in-silico analysis was performed to identify the phenolic compounds with the highest intestinal absorption and Caco-2 permeability. The avocado peel extract possessed the highest content of phenolic compounds (309.95 ± 25.33 mMol GA/100 g of extract) and the lowest effective concentration (EC50) against DPPH and ABTS radicals (72.64 ± 10.70 and 181.68 ± 18.47, respectively). On the other hand, the peel and seed coat extracts had the lowest energy densities (226.06 ± 0.06 kcal/100 g and 219.62 ± 0.49 kcal/100 g, respectively). Regarding the antiproliferative activity, the avocado peel extract (180 ± 40 µg/mL) showed the lowest inhibitory concentration (IC50), followed by the seed (200 ± 21 µg/mL) and seed coat (340 ± 32 µg/mL) extracts. The IC50 of the extracts induced apoptosis in Caco-2 cells at the early and late stages. According to the in-silico analysis, these results could be related to the higher Caco-2 permeability to hydroxysalidroside, salidroside, sakuranetin, and luteolin. Therefore, this study provides new insights regarding the potential use of these extracts as functional ingredients with antioxidant and antiproliferative properties and as medicinal agents in diseases related to oxidative stress such as cancer.


Assuntos
Antioxidantes , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Frutas/química , Alimento Funcional , Persea/química , Extratos Vegetais , Antioxidantes/química , Antioxidantes/farmacologia , Células CACO-2 , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
8.
J Exp Bot ; 72(15): 5407-5425, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34013312

RESUMO

Heterosis occurs when the F1s outperform their parental lines for a trait. Reciprocal hybrids are obtained by changing the cross direction of parental genotypes. Both biological phenomena could affect the external and internal attributes of fleshy fruits. This work aimed to detect reciprocal effects and heterosis in tomato (Solanum lycopersicum) fruit quality traits and metabolite content. Twelve agronomic traits and 28 metabolites identified and estimated by 1H-NMR were evaluated in five cultivars grown in two environments. Given that the genotype component was more important than the phenotype, the traits were evaluated following a full diallel mating design among those cultivars, in a greenhouse. Hybrids showed a higher phenotypic diversity than parental lines. Interestingly, the metabolites, mainly amino acids, displayed more reciprocal effects and heterosis. Agronomic traits were more influenced by general combining ability (GCA) and metabolites by specific combining ability (SCA). Furthermore, the genetic distance between parental lines was not causally related to the occurrence of reciprocal effects or heterosis. Hybrids with heterosis and a high content of metabolites linked to tomato flavour and nutritious components were obtained. Our results highlight the impact of selecting a cultivar as male or female in a cross to enhance the variability of fruit attributes through hybrids as well as the possibility to exploit heterosis for fruit composition.


Assuntos
Vigor Híbrido , Solanum lycopersicum , Cruzamentos Genéticos , Frutas/genética , Vigor Híbrido/genética , Solanum lycopersicum/genética , Fenótipo
9.
Mol Genet Genomics ; 295(4): 837-841, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32300860

RESUMO

This work presents a new method and tool to solve a common problem of molecular biologists and geneticists who use molecular markers in their scientific research and developments: curation of sequences. Omic studies conducted by molecular biologists and geneticists usually involve the use of molecular markers. AFLP, cDNA-AFLP, and MSAP are examples of markers that render information at the genomics, transcriptomics, and epigenomics levels, respectively. These three types of molecular markers use adaptors that are the template for PCR amplification. The sequences of the adaptors have to be eliminated for the analysis of the results. Since a large number of sequences are usually obtained in these studies, this clean-up of the data could demand long time and work. To automate this work, an R package, named CleanBSequences, was created that allows the sequences to be curated massively, quickly, without errors and can be used offline. The curating is performed by aligning the forward and/or reverse primers or ends of cloning vectors with the sequences to be removed. After the alignment, new subsequences are generated without biological fragments not desired by the user, i.e., sequences needed by the techniques. In conclusion, the CleanBSequences tool facilitates the work of researchers, reducing time, effort, and working errors. Therefore, the present tool would respond to the problems related to the curation of sequences obtained from the use of some types of molecular markers. In addition to the above, being an open source, CleanBSequences is a flexible tool that has the potential to be used in future improvements to respond to new problems.


Assuntos
Biologia Computacional , Marcadores Genéticos/genética , Biologia Molecular/métodos , Software , Epigenômica/métodos , Genômica/métodos , Anotação de Sequência Molecular/métodos , Alinhamento de Sequência/métodos , Análise de Sequência/métodos , Transcriptoma/genética
10.
Food Funct ; 10(9): 6110-6120, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31495859

RESUMO

Mango peel is a rich source of phenolic compounds (PC), which can be used in food fortification. The use of water-in-oil-in-water (W1/O/W2) emulsions represents a potential strategy to encapsulate, protect and incorporate PC from mango peel into food products. Moreover, even though non-digestible biopolymers are usually incorporated into emulsions to enhance stability, little is known about the effect on the digestibility and release of PC. In this study, a mango peel extract (MPE) was encapsulated using W1/O/W2 emulsions containing sodium carboxymethyl cellulose (CMC; 0, 0.5, 1.0% w/w) in W2, and their colloidal stability, lipid digestibility kinetics (free fatty acid release), and release (in terms of antioxidant activity) under in vitro digestion conditions were evaluated. The presence of CMC in emulsions caused flocculation of droplets, which remained unchanged during the gastric phase, suggesting that bridging flocculation occurred. Moreover, a slower lipid digestion rate was observed in emulsions containing CMC, with k-values ranging between 0.21 and 0.25 min-1, compared to emulsions without CMC (around 0.14 min-1). However, although CMC may slow down the lipolysis reaction during the first 40 min due to physical or steric hindrance, at the end of the intestinal phase, emulsions with or without CMC had a similar final FFA release. Moreover, MPE release was triggered under gastric conditions, probably by osmotic imbalance, showing a constant antioxidant activity value during the intestinal phase only in emulsions containing CMC. This study provides relevant insights to design double emulsions as delivery systems of water-soluble bioactive compounds with antioxidant activity, such as PC.


Assuntos
Carboximetilcelulose Sódica/química , Mangifera/química , Fenóis/química , Extratos Vegetais/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Digestão , Composição de Medicamentos , Emulsões/química , Frutas/química , Cinética , Óleos/química , Tamanho da Partícula , Fenóis/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Água/química
11.
Nat Commun ; 9(1): 4734, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413711

RESUMO

Shapes of edible plant organs vary dramatically among and within crop plants. To explain and ultimately employ this variation towards crop improvement, we determined the genetic, molecular and cellular bases of fruit shape diversity in tomato. Through positional cloning, protein interaction studies, and genome editing, we report that OVATE Family Proteins and TONNEAU1 Recruiting Motif proteins regulate cell division patterns in ovary development to alter final fruit shape. The physical interactions between the members of these two families are necessary for dynamic relocalization of the protein complexes to different cellular compartments when expressed in tobacco leaf cells. Together with data from other domesticated crops and model plant species, the protein interaction studies provide possible mechanistic insights into the regulation of morphological variation in plants and a framework that may apply to organ growth in all plant species.


Assuntos
Biodiversidade , Frutas/anatomia & histologia , Frutas/genética , Plantas/anatomia & histologia , Plantas/genética , Sequência de Aminoácidos , Divisão Celular , Teste de Complementação Genética , Modelos Biológicos , Mapeamento Físico do Cromossomo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/metabolismo
12.
Sci Rep ; 8(1): 4695, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549295

RESUMO

Chitosan nanoparticles, produced by ionic gelation, are among the most intensely studied nanosystems for drug delivery. However, a lack of inter-laboratory reproducibility and a poor physicochemical understanding of the process of particle formation have been slowing their potential market applications. To address these shortcomings, the current study presents a systematic analysis of the main polymer factors affecting the nanoparticle formation driven by an initial screening using systematic statistical Design of Experiments (DoE). In summary, we found that for a given chitosan to TPP molar ratio, the average hydrodynamic diameter of the particles formed is strongly dependent on the initial chitosan concentration. The degree of acetylation of the chitosan was found to be the second most important factor involved in the system's ability to form particles. Interestingly, viscosimetry studies indicated that the particle formation and the average hydrodynamic diameter of the particles formed were highly dependent on the presence or absence of salts in the medium. In conclusion, we found that by controlling two simple factors of the polymer solution, namely its initial concentration and its solvent environment, it is feasible to control in a reproducible manner the production and characteristics of chitosan particles ranging in size from nano- to micrometres.

13.
Molecules ; 23(3)2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29562699

RESUMO

Mango "Ataulfo" peel is a rich source of polyphenols (PP), with antioxidant and anti-cancer properties; however, it is unknown whether such antiproliferative activity is related to PP's antioxidant activity. The content (HPLC-DAD), antioxidant (DPPH, FRAP, ORAC), and antiproliferative activities (MTT) of free (FP) and chemically-released PP from mango 'Ataulfo' peel after alkaline (AKP) and acid (AP) hydrolysis, were evaluated. AKP fraction was higher (µg/g DW) in gallic acid (GA; 23,816 ± 284) than AP (5610 ± 8) of FR (not detected) fractions. AKP fraction and GA showed the highest antioxidant activity (DPPH/FRAP/ORAC) and GA's antioxidant activity follows a single electron transfer (SET) mechanism. AKP and GA also showed the best antiproliferative activity against human colon adenocarcinoma cells (LS180; IC50 (µg/mL) 138.2 ± 2.5 and 45.7 ± 5.2) and mouse connective cells (L929; 93.5 ± 7.7 and 65.3 ± 1.2); Cheminformatics confirmed the hydrophilic nature (LogP, 0.6) and a good absorption capacity (75%) for GA. Data suggests that GA's antiproliferative activity appears to be related to its antioxidant mechanism, although other mechanisms after its absorption could also be involved.


Assuntos
Antioxidantes/farmacologia , Ácido Gálico/análise , Mangifera/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Extratos Vegetais/química , Polifenóis/farmacologia
14.
Anal Chem ; 89(22): 12602-12608, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29087687

RESUMO

Chitosans, ß-1,4-linked partially N-acetylated linear polyglucosamines, are very versatile and promising functional biopolymers. Understanding their structure-function relationships requires sensitive and accurate structural analyses to determine parameters like degree of polymerization (DP), fraction of acetylation (FA), or pattern of acetylation (PA). NMR, the gold standard for FA analysis, requires large amounts of sample. Here, we describe an enzymatic/mass spectrometric fingerprinting method to analyze the FA of chitosan polymers. The method combines the use of chitinosanase, a sequence-specific hydrolase that cleaves chitosan polymers into oligomeric fingerprints, ultrahigh-performance liquid chromatography-electrospray ionization-mass spectrometry (UHPLC-ESI-MS), and partial least-squares regression (PLSR). We also developed a technique to simulate enzymatic fingerprints in silico that were used to build the PLS models for FA determination. Overall, we found our method to be as accurate as NMR while at the same time requiring only microgram amounts of sample. Thus, the method represents a powerful technique for chitosan analysis.


Assuntos
Quitinases/metabolismo , Quitosana/análise , Quitosana/metabolismo , Simulação de Dinâmica Molecular , Cromatografia Líquida de Alta Pressão , Hidrólise , Análise dos Mínimos Quadrados , Análise de Componente Principal , Espectrometria de Massas por Ionização por Electrospray
15.
Carbohydr Polym ; 174: 1121-1128, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28821036

RESUMO

The biological activities of partially acetylated chitosan oligosaccharides (paCOS) depend on their degree of polymerization (DP), fraction of acetylation (FA), and potentially their pattern of acetylation (PA). Therefore, analyzing structure-function relationships require fully defined paCOS, but these are currently unavailable. A promising approach for obtaining at least partially defined paCOS is using chitosanolytic enzymes. Here we purified and characterized a novel chitosan-hydrolyzing enzyme from the fungus Alternaria alternata possessing an absolute cleavage specificity, yielding fully defined paCOS. It cleaves specifically after GlcN-GlcNAc pairs and is most active towards moderately acetylated chitosans, but shows no activity against fully acetylated or fully deacetylated substrates. These unique properties match neither those of chitinases nor chitosanases. Therefore, the enzyme represents the first member of a new class of chitosanolytic enzymes that will allow for the production of fully defined paCOS. Additionally, it represents a highly valuable tool for fingerprinting analyses of chitosan polymers.


Assuntos
Alternaria/enzimologia , Quitinases/metabolismo , Quitosana/metabolismo , Acetilação , Oligossacarídeos , Polimerização
16.
Food Funct ; 8(1): 15-38, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28074953

RESUMO

The positive health effects of phenolic compounds (PCs) have been extensively reported in the literature. An understanding of their bioaccessibility and bioavailability is essential for the elucidation of their health benefits. Before reaching circulation and exerting bioactions in target tissues, numerous interactions take place before and during digestion with either the plant or host's macromolecules that directly impact the organism and modulate their own bioaccessibility and bioavailability. The present work is focused on the gastrointestinal (GI) interactions that are relevant to the absorption and metabolism of PCs and how these interactions impact their pharmacokinetic profiles. Non-digestible cell wall components (fiber) interact intimately with PCs and delay their absorption in the small intestine, instead carrying them to the large intestine. PCs not bound to fiber interact with digestible nutrients in the bolus where they interfere with the digestion and absorption of proteins, carbohydrates, lipids, cholesterol, bile salts and micronutrients through the inhibition of digestive enzymes and enterocyte transporters and the disruption of micelle formation. PCs internalized by enterocytes may reach circulation (through transcellular or paracellular transport), be effluxed back into the lumen (P-glycoprotein, P-gp) or be metabolized by phase I and phase II enzymes. Some PCs can inhibit P-gp or phase I/II enzymes, which can potentially lead to drug-nutrient interactions. The absorption and pharmacokinetic parameters are modified by all of the interactions within the digestive tract and by the presence of other PCs. Undesirable interactions have promoted the development of nanotechnological approaches to promote the bioaccessibility, bioavailability, and bioefficacy of PCs.


Assuntos
Absorção Gastrointestinal , Trato Gastrointestinal/metabolismo , Fenóis/farmacocinética , Administração Oral , Animais , Humanos , Fenóis/administração & dosagem
17.
J Exp Bot ; 66(20): 6471-82, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26175354

RESUMO

fs8.1 is a major quantitative trait locus (QTL) that controls the elongated shape of tomato (Solanum lycopersicum) fruit. In this study, we fine-mapped the locus from a 47Mb to a 3.03Mb interval on the long arm of chromosome 8. Of the 122 annotated genes found in the fs8.1 region, 51 were expressed during floral development and six were differentially expressed in anthesis-stage ovaries in fs8.1 and wild-type (WT) lines. To identify possible nucleotide polymorphisms that may underlie the fruit shape phenotype, genome sequence analyses between tomato cultivars carrying the mutant and WT allele were conducted. This led to the identification of 158 single-nucleotide polymorphisms (SNPs) and five small indels in the fs8.1 interval, including 31 that could be associated with changes in gene expression or function. Morphological and histological analyses showed that the effects of fs8.1 were mainly on reproductive organ elongation by increasing cell number in the proximal-distal direction. Fruit weight was also increased in fs8.1 compared with WT, which was predominantly attributed to the increased fruit length. By combining the findings from the different analyses, we consider 12 likely candidate genes to underlie fs8.1, including Solyc08g062580 encoding a pentatricopeptide repeat protein, Solyc08g061560 encoding a putative orthologue of ERECTA, which is known to control fruit morphology and inflorescence architecture in Arabidopsis, Solyc08g061910 encoding a GTL2-like trihelix transcription factor, Solyc08g061930 encoding a protein that regulates cytokinin degradation, and two genes, Solyc08g062340 and Solyc08g062450, encoding 17.6kDa class II small heat-shock proteins.


Assuntos
Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Frutas/genética , Frutas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Alinhamento de Sequência , Análise de Sequência de DNA
18.
Nutr. hosp ; 31(1): 67-75, ene. 2015. tab, ilus
Artigo em Espanhol | IBECS | ID: ibc-132583

RESUMO

Objetivo: Revisar y discutir la información más reciente sobre el valor agroindustrial, funcional y nutricional de uno de los frutos de mayor cultivo, exportación y consumo en México: el Mango. Métodos: Se realizó una búsqueda en diversas bases de datos (PubMed, Cochrane, ScienceDirect) y documentos de libre acceso (Google Scholar) sobre Mangifera indica L. Esta información fue posteriormente sub-clasificada en aspectos agroindustriales, nutricionales, funcionales y efectos a la salud. Resultados: Uno de cada veinte mangos consumidos mundialmente, es mexicano. 'Ataulfo' es la variedad la de mayor importancia agronómica. El procesamiento mínimo de su pulpa (MP) genera residuos de cáscara (MC) y semilla con alto potencial nutracéutico. MP y MC son buenas fuentes de ascorbato, fructosa, fibra dietarias soluble (MP, almidones y ramnogalacturonanos) e insoluble (MC, ligninas y hemicelulosa) y lípidos funcionales (MP). MP y MC poseen un perfil de compuestos fenólicos (CF) monoméricos (MP) como el acido gálico y el protocatehuico y poliméricos (MC) como la β-PGG asociados con efectos anti-obesigénicos, anti-inflamatorios, anti-cancerigenos y anti-diabeticos. Estos beneficios son dependientes de la bioaccesibilidad (liberación de su matriz alimentaria) y destino metabólico (biodisponibilidad) de estos CF. Discusión: El mango resulta una valiosa fuente de compuestos antioxidantes con comprobado beneficio a la salud. Sin embargo, factores como la variedad, temporalidad de cultivos, tratamientos pre y post-cosecha, extracción de bioactivos y algunas barreras fisiológicas pueden modificar su potencial nutracéutico (AU)


Objective: To review and discuss the latest information on agroindustrial, functional and nutritional value of one of the most produced/consumed fruit crop in México: The mango. Methods: A search was conducted in several databases (PubMed, Cochrane, ScienceDirect) and public repositories (Google Scholar) on Mangifera indica L. This information was further sub-classified into agroindustrial, nutritional, functional aspects and health effects. Results: One out of twenty mangoes consumed worldwide is Mexican. The variety 'Ataulfo' variety is the most important crop. Minimal processing of its pulp (MP) generates peel (MC) and seeds as biowastes, which have nutraceutical potential. MP and MC are good sources of ascorbate, fructose, soluble (MP, starches and rhamnogalacturonans) and insoluble (MC, lignin and hemicelluloses) dietary fibers as well as functional lipids (MP). MP and MC are good sources of monomeric (MP) phenolic compounds (PC) such as gallic and protocatehuic acids and polymeric PC (MC) such as β-PGG with associated anti-obesigenic, anti-inflammatory, anti-carcinogenic and anti-diabetic potential. However, these benefits are dependent on their bioaccessibility (release from its food matrix) and metabolic fate (bioavailability). Discussion: Mango is a valuable source of antioxidant compounds with proven health benefits. However, factors such as its variety, seasonality, pre and post-harvest handling, extraction of bioactives and some physiological barriers, can modify their nutraceutical potential (AU)


Assuntos
Humanos , Feminino , Masculino , Mangifera/química , Valor Nutritivo , Alimento Funcional , Mangifera/classificação , Indústria Alimentícia , Fibras na Dieta , Agricultura , Antioxidantes/farmacologia
19.
Eur J Pharm Biopharm ; 87(1): 47-54, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24530693

RESUMO

Recently we reported for the first time a new type of nanocapsules consisting of an oily core and a polymer shell made of a polyglutamic acid-polyethylene glycol (PEG-PGA) grafted copolymer with a 24% w/w PEG content. The goal of the work presented here has been to develop a new version of these nanocapsules, in which the shell is made of a di-block PEG-PGA copolymer with a 57% w/w PEG content and to evaluate their potential for improving the biodistribution and pharmacokinetics of the anticancer drug docetaxel (DCX). A comparative analysis of the biodistribution of fluorescently labeled PGA-PEG nanocapsules versus PGA nanocapsules or a control nanoemulsion (containing the same oil than the nanocapsules) showed that the nanocapsules, and in particular PEGylated nanocapsules, have significantly higher half-life, MRT (Mean Residence Time) and AUC (Area under the Curve) than the nanoemulsion. On a separate set of experiments, PGA-PEG nanocapsules were loaded with DCX and their antitumor efficacy was evaluated in a xenograft U87MG glioma mouse model. The results showed that the survival rate for mice treated with DCX-loaded nanocapsules was significantly increased over the control Taxotere®, while the antitumoral effect of both formulations was comparable (60% tumor growth inhibition with respect to the untreated mice). These results highlight the potential use of these novel nanocapsules as a new drug delivery platform in cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Nanocápsulas/química , Polietilenoglicóis/química , Ácido Poliglutâmico/química , Taxoides/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Preparações de Ação Retardada , Docetaxel , Proteína Duplacortina , Portadores de Fármacos/farmacocinética , Eritrócitos/efeitos dos fármacos , Eritrócitos/patologia , Feminino , Hemólise/efeitos dos fármacos , Humanos , Estimativa de Kaplan-Meier , Camundongos , Tamanho da Partícula , Ácido Poliglutâmico/sangue , Ratos Wistar , Propriedades de Superfície , Taxoides/farmacocinética , Taxoides/uso terapêutico , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nutr Hosp ; 31(1): 67-75, 2014 Nov 01.
Artigo em Espanhol | MEDLINE | ID: mdl-25561099

RESUMO

OBJECTIVE: To review and discuss the latest information on agroindustrial, functional and nutritional value of one of the most produced/consumed fruit crop in México: The mango. METHODS: A search was conducted in several databases (PubMed, Cochrane, ScienceDirect) and public repositories (Google Scholar) on Mangifera indica L. This information was further sub-classified into agroindustrial, nutritional, functional aspects and health effects. RESULTS: One out of twenty mangoes consumed worldwide is Mexican. The variety "Ataulfo" variety is the most important crop. Minimal processing of its pulp (MP) generates peel (MC) and seeds as biowastes, which have nutraceutical potential. MP and MC are good sources of ascorbate, fructose, soluble (MP, starches and rhamnogalacturonans) and insoluble (MC, lignin and hemicelluloses) dietary fibers as well as functional lipids (MP). MP and MC are good sources of monomeric (MP) phenolic compounds (PC) such as gallic and protocatehuic acids and polymeric PC (MC) such as -PGG with associated anti-obesigenic, anti-inflammatory, anti-carcinogenic and anti-diabetic potential. However, these benefits are dependent on their bioaccessibility (release from its food matrix) and metabolic fate (bioavailability). DISCUSSION: Mango is a valuable source of antioxidant compounds with proven health benefits. However, factors such as its variety, seasonality, pre and post-harvest handling, extraction of bioactives and some physiological barriers, can modify their nutraceutical potential.


Objetivo: Revisar y discutir la información más reciente sobre el valor agroindustrial, funcional y nutricional de uno de los frutos de mayor cultivo, exportación y consumo en México: el Mango. Métodos: Se realizó una búsqueda en diversas bases de datos (PubMed, Cochrane, ScienceDirect) y documentos de libre acceso (Google Scholar) sobre Mangifera indica L. Esta información fue posteriormente sub-clasificada en aspectos agroindustriales, nutricionales, funcionales y efectos a la salud. Resultados: Uno de cada veinte mangos consumidos mundialmente, es mexicano. "Ataulfo" es la variedad la de mayor importancia agronómica. El procesamiento mínimo de su pulpa (MP) genera residuos de cáscara (MC) y semilla con alto potencial nutracéutico. MP y MC son buenas fuentes de ascorbato, fructosa, fibra dietarias soluble (MP, almidones y ramnogalacturonanos) e insoluble (MC, ligninas y hemicelulosa) y lípidos funcionales (MP). MP y MC poseen un perfil de compuestos fenólicos (CF) monoméricos (MP) como el acido gálico y el protocatehuico y poliméricos (MC) como la -PGG asociados con efectos anti-obesigénicos, anti-inflamatorios, anti-cancerigenos y anti-diabeticos. Estos beneficios son dependientes de la bioaccesibilidad (liberación de su matriz alimentaria) y destino metabólico (biodisponibilidad) de estos CF. Discusión: El mango resulta una valiosa fuente de compuestos antioxidantes con comprobado beneficio a la salud. Sin embargo, factores como la variedad, temporalidad de cultivos, tratamientos pre y post-cosecha, extracción de bioactivos y algunas barreras fisiológicas pueden modificar su potencial nutracéutico.


Assuntos
Alimento Funcional , Mangifera/química , Valor Nutritivo , Agricultura , Animais , Antioxidantes/farmacologia , Fibras na Dieta , Indústria Alimentícia , Humanos , Mangifera/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...